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ABSTRACT

Mal-ware such as viruses and worms are increasingly proliferating through out all networks.

Existing schemes that address these issues either assume that the mal-ware is available in its

plain-text format which can be detected directly with its signature or that its exploit-code

execution is directly recognizable. Hence much of the development in this area has been

focussed on generating more efficient signatures or in coming up with improved anomaly-based

detection and pattern matching rules. However with ”secure data” being the watch-word

and several efficient encryption schemes being developed to obfuscate data and protect its

privacy, encrypted mal-ware is very much a clear and present threat. While securing resources

from encrypted threats is the need of the hour, equally critical is the privacy of content that

needs to be protected. In this paper we discuss encrypted mal-ware detection and propose an

efficient IP-packet level scheme for encrypted mal-ware detection that does not compromise

the privacy of the data but at the same time helps detect the presence of hidden mal-ware in

it. We also propose a new grammar for a generalized representation of all kinds of malicious-

signatures as described in [27]. This signature grammar is inclusive of even polymorphic and

metamorphic signatures which do not have a straight-forward one-to-one mapping between

the signature string and worm-recognition. In a typical system model consisting of several

co-operating hosts which are un-intentional senders of mal-ware traffic, where a centralized

network monitor functions as the mal-ware detection entity, we show that for a very small

memory and processing overhead and almost negligible time-requirements, we achieve a very

high detection rate for even the most advanced multi-keyword polymorphic signatures.
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CHAPTER 1. INTRODUCTION

Mal-ware such as viruses and worms are considered to be one of the chief threats to the

security of a system and is one of the most widely studied topics in the field of Network Security.

In this paper, we propose a method to efficiently and accurately detect Encrypted Mal-ware

without compromising on the privacy of the data which is encrypted.

1.1 Introduction

The term mal-ware (an abbreviation of the phrase ”malicious software”) can collectively

refer to viruses, worms, Trojans or any other piece of code that intentionally perform malicious

tasks on a computer system. Mal-ware propagation and detection is one of the most extensively

studied fields in the field of network security. Mal-ware can occur in different forms, viruses

that come as an attachment with some other application, worms that propagate independently

through-out the network or even malicious scripts embedded in the middle of plain-text that

can be used to exploit a vulnerability (as is the case with mal-ware like trojans and back-

doors). Encrypted mal-ware is a class of mal-ware whose payload data and the signature

used to identify it are concealed as randomly distributed encrypted strings and hence cannot

be detected with simple signature-based detection schemes.Infact according to [22] almost

80 to 90 percent of all mal-ware occurs in the encrypted form. Current methods to detect

mal-ware can be broadly classified into two-types, static-signature- based detection schemes

and dynamic-anomaly based detection schemes. At times a combination the two schemes is

employed in which mutual verification is used to reduce the error-rate of the detection. In

the former method, looking for fixed strings or keywords uniquely identifying the mal-ware

by its signature forms the crux of the detection mechanism.In the latter method, 2 patterns
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of behavior such as -control or looping-constructs of a piece of code are examined and these

pattern-matches as opposed to fixed strings identify the presence of mal-ware.

1.2 Related Work

1.2.1 Mal-ware detection

Signature-based detection schemes include [27], [13]and have the advantage that they are

simple and can be deployed online to detect live-attacks. But their disadvantage is that these

cannot detect zero-day attacks and need to be updated frequently with the most-recently de-

veloped signatures. Besides unless otherwise programmed they cant detect advanced polymor-

phic, metamorphic or self-encrypting worms which change their signatures routinely. Anomaly

based detection schemes such as [30], [36], [11], [37] have the merit that they do not require

any fixed signature-database and can detect any zero-day attack, but these are much more

complex systems to be deployed since behavior analysis is not a quick one-to-one matching

process. Sometimes it needs to be configured to suit the specific nature of a network and

its underlying traffic pattern. Often, this cannot be done on-line resulting in delay and con-

siderable overhead. Also, according to [35] these also tend to generate more false positives.

Papers such as [35] attempt to strike a balance between the two methods to arrive at the

more desirable trade-off. However both these detection mechanisms will fail in the presence of

encrypted mal-ware. Signature-based schemes will straightforwardly fail to recognize matching

strings since they are encrypted, unless we have some way to match signatures with all of its

encrypted variants. But this could be easier said than done, considering the vast diversity of

encryption mechanisms including the new ones being developed. Anomaly based methods that

have been proposed so far do not consider control that includes possible decryption mecha-

nisms and directly only look for matching patterns of exploit-code execution. Methods such

as, [19] which do a content-based payload-partition to develop a signature or earliest- pattern-

matching schemes like, [2] would not help us identify encrypted ma-ware at all. In the former,

the authors look for the most prevalent signature byte in the stream, but this would fail if the

worm morphs itself for each instance of its infection. In the latter, the authors conclude that
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exploit-code detection should be recognized at the earliest possible execution time of an entity.

On the other hand, most encrypted mal-ware come with multiple advanced and inter-changing

encryption and decryption segments or sometimes the mal-ware even gets interleaved between

these flows and hence such a scheme would also fail in this scenario.

1.2.2 Identifying encrypted content

Identifying encrypted content and differentiating it from content that is available in its

plain-text as-is form has been studied before. [21] , [33], [24] are some of the papers which

have been published in this area. But most often these papers aim to recognize and distinctly

identify encrypted traffic by looking at HTTP port values or protocol deviations but do not deal

with identifying mal-ware signatures in encrypted traffic. [24] actually speaks about detecting

encrypted SSL traffic which involves storing private-key sensors that recognize these in the

network. But in this technique the authors attempt to decrypt the packet and then detect

mal-ware signatures. This is not a feasible option since in the system model, protecting the

privacy of hosts is an important condition. Several statistical methods like the use of entropy,

randomness and even byte-distribution have been used to identify encrypted data from plain-

text data but as mentioned before, these stop at detecting encrypted traffic and do not proceed

beyond that. In the secure system model that we are considering, all or most of the traffic

can be assumed to be encrypted and hence such schemes will not be needed. [22] deals with

identifying encrypted mal-ware using entropy as a metric. The authors evaluate degree of

randomness as a determining factor to decide whether content is encrypted or not. Apart from

not catering specifically to our problem-statement, the authors have also designed a technique

that works only for Windows PE files. Such a platform-dependent solution may not be very

useful for extensive-deployment in modern-day heterogenous networks. Also, there is a class

of mal-ware called self-decrypting mal-ware which contain a decryption routine that un-packs

the encrypted exploit code part, both of which are present in the same file or segment. We

do not know how entropy or any other information- 4 distribution metric can clearly identify

such mixed-content payloads. [39] which specifically deals with self-decrypting exploit code
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is based on the assumption that the decryption routine can be successfully identified as a

signature. The authors then proceed to develop a back-ward tracing method from this to

actually detect the mal-ware. But the decryption routine itself is a simple, and ubiquitously

occurring sequence of bytes such as a routine XOR decryption. They usually have a fixed key

pre-configured within the routine for the decryption. Using this as a signature to identify or

detect a self-decrypting exploit code can lead to a huge number of false-positives since such a

piece of code is widely prevalent even in non-malicious packets. Also the presence of decryption

routine itself is common only to this specific class and does not include content which only

have the encrypted payload alone. Several other methods to detect encrypted packet content

like the chi-square distribution and cumulative-byte-frequency distribution have been discussed

before as methods to detect encrypted content.

1.2.3 A Glimpse at Searchable Encryption

Considering the requirements of our system, we propose an idea extending from a popular

area of research generally called as ”Searchable encryption ”. A huge body of work has been

done in this field and in this paper, we discuss how we can efficiently apply indexing as a

means to detect encrypted mal-ware traffic as opposed to secure-indexing where the word in

the index is itself encrypted and stored. Searchable encryption and Secure Indexing have been

widely discussed in [3], [1], [4], [6], [20] , [10], [14], [17], [18], [28], [32]. Some of these papers

propose a method by which data whose privacy needs to be preserved is encrypted in one the

searchable-encryption schemes and before it gets encrypted, the data is indexed. This index

along with the searchable encryption helps detect content in an encrypted packet. In fact [32]

does not even require that data needs to be indexed before its encryption, it uses a simple

XOR encryption, search and decryption to serve the same purpose. [6] and [10] have proposed

schemes for provisioning symmetric encryption with search capabilities. [1] and [6] discuss a

typical application,where a user publishes a public key while multiple senders send e-mail. This

also works in the domain of searchable-encryption. Searchable symmetric encryption allows

a party to out-source the storage of its data to another party (a server) in a private manner,
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while maintaining the ability to selectively search over it and hence secure indexing finds an

application here. For our system-model, we realized that constraining the nodes to be only

searchable-encrypted might be a limiting factor that we are imposing on all the hosts in the

network. Instead if we just ask that the nodes simply index their data before they encrypt

and send the index in its plain-text form along with the encrypted data, then such a problem

could be easily over-come. This follows directly from our assumption that while mal-ware

might be present in the packet in its encrypted form, there is no real threat to the packet itself

or its transmission and it is just the packet’s encrypted payload whose privacy needs to be

protected. So securing the index is not an issue for us. In-fact in most cases all that is needed

is the optional field in the IP packet for us to put in a bloom-filter, this has absolutely no

additional memory requirement. Once indexed this way, the method now becomes encryption-

protocol independent which can work for any kind of secure encrypted data transfer. This

gives more autonomy to every node in the network to choose a secure encryption of its choice.
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CHAPTER 2. PROBLEM STATEMENT

The goal of our proposal can be summed up in the following statement: Given a set of non-

malicious, co-operative and un-intentional senders of encrypted malicious traffic, how would

we detect the presence of the mal-ware in the packet payload while also ensuring that the

privacy of the data-transfer in packet is unaffected.

2.1 System Model

The System model we are considering has the following components:

• Multiple Hosts in the network acting as both Senders and Receivers of encrypted traf-

fic from other hosts in the network.These are typical thin clients that are resource-

constrained.

• A Monitor that sits in the middle of the network that is capable of sniffing and analyzing

all packets that pass through the network.

• The Monitor is usually powerful enough to be aware of the exact encryption mechanism

of all the hosts in the network, it is a trusted mal-ware sniffer and might be even in

possession of the required keys to break the encryption but does not do so to meet our

design goal of privacy.

• An extensive Worm-Signature database that can be dynamically updated and to which

the Monitor alone has access to.
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Figure 2.1 A General System Model with a network-sniffer Monitor (M)
in a Sender-Receiver system.

2.2 Threat Model

The threat model which we are pursuing consists of the following components:

• A Sender wanting to transfer data to another host in the network decides to encrypt the

data in a mutually agreed upon encryption mechanism.

• However the naive sender or the host is not aware of the nature of its content and

is incapable of evaluating whether it is malicious or not since it has no access to an

extensive worm-signature database.

• The Sender might not be always considered as the source generating the encrypted traffic,

it could simply be a gateway node that encrypts and forwards traffic into its domain

network.Hence the sender can be a non-malicious entity.

• Multiple innocent nodes communicating to each other in a secure fashion (either through

symmetric or asymmetric means), these are typical thin clients that are resource-constrained.

• A Single centralized all-aware Monitor equipped with a dynamically updated signature-

database without any critical resource constraints. This could typically be a router or

even the Internet Service Provider or even a network fire-wall

This system model is one of the most-commonly prevalent and is typical of corporate

networks, secure Local Area Network (LANs) and even Publish-subscribe systems where many



www.manaraa.com

8

of the clients are thin subscribers while a server acts as the all-powerful system and is usually

not as resource-constrained as the other hosts of the system. This is also a popular case in a real-

time networks like Internet also, because very few nodes intentionally spread malicious traffic

and predominant nodes do malicious acts without their will or intention. Examples include

stepping stones which are used as intermediate levels between the source and the destination

to spread worm traffic to avoid trace-back detection or bot-nets where slave bots routinely act

under the will of controlling bots to spread the infection.It is a very realistic scenario that an

all-powerful network sniffer sits in the middle of the network. Sometimes, even the router that

flags each packet can act as the Monitor or the same functionality can be done by any general

packet-logger or in some real-time cases, a network fire-wall or a gateway.The overhead of our

scheme, as we will show in our experimental results in the later sections, is almost negligible

compared to the variety of mal-ware that this scheme is capable of detecting.
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CHAPTER 3. OUR SOLUTION

As a part of the solution to the encrypted mal-ware detection problem, we propose two

important features:

• A Novel system model that uses the existing IP packet structure to efficiently detect

encrypted mal-ware while keeping their privacy intact.

• A proposal for a generalized all-encompassing signature grammar that captures malicious

attributes and the object defined in a simple format.

3.1 Classes of signature

In this paper we propose a new grammar for all the different types of polymorphic mal-

ware signatures based on the classification given by [27]. According to the authors, samples

of the same polymorphic worm often share some invariant content due to the fact that they

exploit the same vulnerability. Its because we implement this advanced signature scheme in

our grammar, we are also able to detect such advanced polymorphic worms also in our scheme.

It general the byte-pattern of any exploit can be classified into 3 types:

• Invariant bytes are those fixed in value, which if changed, cause an exploit no longer to

function. These byte-patters are useful as static signatures.

• Wildcard bytes are those which may take any value without affecting the correct func-

tioning of a worm.

• Code bytes are the actual polymorphic code executed by a worm through its engine.
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Based on the above given classification and combined with the fact that all polymorphic

variants of the worm contain some invariant bytes in one fashion or the other, the authors have

arrived at the following three classes of signatures:

• Conjunction signatures: A signature that consists of a set of tokens, and matches a

payload if all tokens in the set are found in it, in any order.

• Token Subsequence Signature: A signature that consists of an ordered set of tokens.

• Bayes Signature: A signature that consists of a set of tokens, each of which is associated

with a score, and an over-all threshold.

For instance consider the case where a mal-ware has as a part of its signature, tokens

t1....tm appearing in the packet payload to get exactly identified as that entity. Each of these

tokens can be a multi-byte keyword that chains up in a certain way to form the mal-ware.

Now we can enforce three different rules on these m tokens. We can say that the tokens should

have a sequential ordering, that is t1 should be followed by t2 and so on till tm. This is the

token-subsequence or ordered format. When we only require that all of t1 to tm appear in the

payload but we ignore the ordering or sequence arrangement of the tokens themselves, this is a

conjunction signature. When each of the tokens are assigned a weighted value and a threshold

assigned for the mal-ware, the presence of enough tokens that meet the threshold imply the

presence of a worm and this is called the bayes format. In this case, we do not need all of the

tokens to be present nor do we have a positional ordering for them. In the coming sections,

we will describe these in more detail. For a simple illustration, consider various classes of

signature and their representation of the Apache-Knacker worm as given in [27]:

Token Subsequence:

Wi = (GET. ∗ HTTP/1.1/r/n ∗ /xFF/xBF ∗ /r/nHost) (3.1)

Conjunction:

Wi = (GET.,HTTP/1.1/r/n, /xFF/xBF, /r/nHost) (3.2)
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Bayes:

Wi = (GET. : 0.0035, /xFF/xBF : 3.1517, /r/nHost : 0.0022, Threshold : 1.9934) (3.3)

3.2 Need for a Generalized Signature Grammar

Much of the work in the field of signature-based detection has been focussed on generat-

ing more efficient and accurate signatures which characterize and quickly identify a mal-ware

entity’s signature with the lowest possible false-positives and false-negatives. The other dimen-

sion is to automate the signature extraction method by heuristic analysis, behavior modeling

and training. In this paper we look at another very critical but often over-looked dimension

of Mal-ware signatures, viz how are these signatures going to get represented in a generalized,

efficient and all-encompassing format. One of the first questions that might arise in the minds

of the readers is why a generalized grammar format for mal-ware signature is required in the

first place. Lets look at some common signature-storing utilities like Snort [31] and Bro [7].

Snort’s rule-database is a huge set of individual text files that have different fields that char-

acterize every possible anomalous behavior of the mal-ware. Each of these rule-files include

several attributes of the packet like header length, round-trip time,packet-counters and such,

all of which have to show some specific behavior for the intrusion to be matched and detected

according to the rule-set. Though we are not analyzing the efficiency of the detection itself,

we have to understand that such a representation is obviously not the most efficient one we

can come up for storing the signatures. Snort has millions of such rules and a large number

of files each storing in its format, the signature of a specific exploit and these files classified

into multiple folders differentiated by the intrusion or attack type. Bro is not very different

either. Also both these formats do not accommodate polymorphic or metamorphic variants as

different forms of the same exploit. So due to all these draw-backs, there is a critical need to

come up with a much more memory-efficient grammar to act as a common representation.
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3.3 A proposal for a Generalized Mal-ware Signature Grammar

The signature representation in both [31] and [7] is in-efficient at-least in terms of memory

utilization. Firstly it requires multiple files to store the different types of as opposed to tuples

in a table or database that can have a much lower requirement. This also saves a lot of data-

transfer and network load since Snort has a mechanism to issue a new set of rule-set whenever

a much updated set of rule-set is issued. Most critically , for multiple variants of the same

mal-ware as is the case with most polymorphic signatures, Snort or Bro provides only for

an individual representation of each of these variants as a new rule thought it does say that

they might be similar by nomenclature. So at present there is no common format or general

grammar that can encompass all the attributes of a signature, including the importance of some

tokens being present over other, the way the tokens need to be evaluated and the threshold

required to be satisfied to confidently say whether a mal-ware is present or not. To fill this

void and provide for a signature-format that can accommodate all types of signature-classes

including those for polymorphic worms as mentioned in [27], we come up with a generalized

grammar format for mal-ware signatures. The format is explained as follows:

3.3.1 A New Notation

The generalized notation or grammar representation for any Worm Wi’s signature can be

expressed in the following form:

Wi = (Ki, Ri, T ype, T ) , (3.4)

This above given equation acts as a general format to represent all kinds of worm signatures.

This can be explained as follows:

Each mal-ware signature has a list of m tokens or keywords denoted by:

Ki = (k1, k2, · · · , km) , (3.5)

It also has a set of m rank-values associated with each token it denoted by:
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Ri = (r1, r2, · · · , rm) , (3.6)

Each of these keywords and their values need to be evaluated according to the rules governed

by their type which is given by:

Type = (O/U) , (3.7)

Here O implies Ordered Signature Type and U implies Unordered Signature Type.

• If the Signature type is Ordered and Type = O corresponding to a certain worm Wi ,

then it would check if the keywords are indeed present in the same order as given in Ki.

If this evaluation returns true, then the worm is assumed to be present

• If the Signature type is Unordered and Type = U corresponding to a certain worm Wi

then it would check if the keywords are present in the bloom-filter and their rank-sum

is greater than the threshold or equal to it and nothing more .If this evaluation returns

true, then the worm is assumed to be present in either static single keyword type or

Conjunction type or Bayes type.

3.3.2 Illustration of the Generalized Mal-ware Signature Grammar

Let us consider the signature of the popular Apache-Knacker worm as directly taken from

[27].This Worm has in its list of tokens, words such as GET, HTTP/1.1, Host:,0xFFBF. This

worm expresses itself as polymorphic worm and depending on which form it takes, it can have

any of the following variants of its signature.

3.3.3 Token Subsequence Format or Ordered Signatures

When the Worm occurs as its first variant, it occurs as a Token-Subsequence form.As per

our grammar we can represent it in the following way:

Ki = (GET.,HTTP/1.1/r/n, /xFF/xBF, /r/nHost) , (3.8)
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Ri = (1, 1, 1, 1, 1) , (3.9)

Type =′ O′ (3.10)

T = 5 (3.11)

This implies that the above listed keywords are present in the same order as indicated by

the (*) operator, viz, strictly ordered in the same format. In its ordered form, should be strictly

followed by HTTP/1.1 and so on till all the strings have been found in the same sequence and

only then the worm is assumed to be found in this polymorphic form.

3.3.4 Conjunction Format or Unordered Signatures

When the Worm occurs as its second variant, it occurs as a Conjunction form. As per our

grammar, we can illustrate this format of the signature in the following way.

Ki = (GET.,HTTP/1.1/r/n, /xFF/xBF, /r/nHost) , (3.12)

Ri = (1, 1, 1, 1, 1) , (3.13)

Type =′ U ′ (3.14)

T = 5 (3.15)

This implies that the above listed keywords are present in the same order as indicated by

the (,) operator. In this class, all the above mentioned tokens GET, HTTP/1.1 should be

present in the payload, their order does not matter and the worm is assumed to be present if

just all tokens are present in any order.
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3.3.5 Bayes Format or Ranked Signatures

When the Worm occurs as its third and final variant, it occurs in the Bayes form. According

to our formal notation, we can represent this as:

Ki = (GET.,HTTP/1.1/r/n, /xFF/xBF, /r/nHost) , (3.16)

Vi = (0.0035, 0.0022, 3.1517, 0.1108) (3.17)

Type =′ U ′ (3.18)

T = 1.9934 (3.19)

This implies that the above listed keywords are present in the same order as indicated by

the (:) operator. When the worm occurs in the Bayes for, each token is assigned a weight or

value and the sum of the value of the tokens found in the payload should exceed the threshold.

If so, this alone is just a sufficient condition for the worm to be present. It does not require

that all keywords should be present but just enough keywords to meet the threshold.

Figure 3.1 Our proposed Architecture with Bloom-filters
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3.4 A Glance at Bloom Filters

3.4.1 Introduction to Bloom-Filters

A Bloom filter is a simple space-efficient randomized data structure for representing a set

in order to support membership queries. Bloom filters allow false positives but the space

savings often outweigh this drawback when the probability of an error is made sufficiently low.

Burton Bloom introduced Bloom filters in the 1970s [5] and ever since they have been very

popular in database applications. Recently they started receiving more widespread attention

in the networking literature. [9] gives us a very extensive survey of the network applications

of Bloom-filters.

3.4.2 What is a Bloom-Filter ?

A Bloom filter for representing a set S = x1, x2, . . . , xn of n elements is described by an

array of m bits, initially all set to 0. A Bloom filter uses k independent hash functions h1, . .

. , hk with range 1, . . . , m. For mathematical convenience, we make the natural assumption

that these hash functions map each item in the universe to a random number uniform over the

range 1, . . . ,m. For each element x of S, the bits hi(x) are set to 1 for 1 = i = k. A location

can be set to 1 multiple times, but only the first change has an effect. To check if an item y

is in S, we check whether all hi(y) are set to 1. If not, then clearly y is not a member of S. If

all hi(y) are set to 1, we assume that y is in S, although we are wrong with some probability.

Hence, a Bloom filter may yield a false positive, where it suggests that an element x is in S

even though it is not. Figure 1 provides an example.

3.4.3 False-Positives in Bloom-Filter

For many applications,including ours, false positives may be acceptable as long as their

probability is sufficiently small. To avoid trivialities we will silently assume from now on that

k ∗ n less than m. [17] gives us the false positive rate of the bloom-filter as a function of the

total unique strings hashed (n), the size of the bloom-filter array (m) and also the number of

hash-functions (r) used to hash each item into the bloom-filter.
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3.4.4 Optimizing Bloom-Filters

Bloom-filters can be tuned to give a certain desirable false positive rate. The parameters

that represent this false-positives are influenced by two factors, the number of hash functions

used for each element and the size of the bloom-filter array. In most cases, the size of the

database or the number of unique strings (n) to be hashed is more or less a constant. Suppose

that we are given m and n and we wish to optimize for the number of hash functions. There

are two competing forces: using more hash functions gives us more chances to find a 0 bit for

an element that is not a member of S, but using fewer hash functions increases the fraction of

0 bits in the array.

3.4.5 Alternate Design Choices: Hash Table Vs Bloom-Filters

While thinking of Bloom-Filters as a design choice for our model, we also considered other

alternatives. One of the most important one was a Hash-table. Indeed, a Bloom filter with

just one hash function is equivalent to ordinary hash-table.

Hashing is among the most common ways to represent sets. Each item of the set is hashed

into T(log n) bits, and a (sorted) list of hash values then represents the set. This approach

yields very small error probabilities. For example, using 2 log n base 2, bits per set element, the

probability that two distinct elements yield the same hash value is 1/n2. Hence, the probability

that any element not in the set matches some hash value in the set is at most n/n2 = 1/n by

the standard union bound.

Bloom filters can be interpreted as a natural generalization of hashing that allows more

interesting tradeoffs between the number of bits used per set element and the probability of

false positives. Bloom filters yield a constant false positive probability even for a constant

number of bits per set element. For example, when m = 8n, the false positive probability

is just over 0.02. For most theoretical analyzes, this tradeoff is not useful: typically, one

needs an asymptotically vanishing probability of error, which is achievable only when we use

T(log n) bits per element. Hence, Bloom filters have received little attention in the theory

community. In contrast, for practical applications, a constant false positive probability may
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well be worthwhile in order to keep the number of bits per element constant.

3.4.6 Bloom Filters for Signature matching: Related work

[15] deals with using parallel bloom-filter search engines to perform signature-matching.

However the authors assume that the signature of each entity is a single contiguous word that

exactly indicates an entity’s presence.We will show in the later sections, the short-comings

of such an approach.This might be true for simple static cases but fails miserably for any

kind of mutable or complex exploits.Further, built on the lines of Snort, it uses rule-sets

as opposed to strings of signatures as we consider in our system. Also the authors have a

hardware-implementation of the bloom-filter search engine, this might provide a performance

advantage, but FPGAs need to be re-configured and the circuits changed for every addition or

modification we need to do. For applications that are dynamic and growing like a mal-ware

signature database, we might want a solution that has a low overhead for change or growth. [12]

gives an improved algorithm over the Bayer-Moore used by Snort to perform quicker pattern-

matching. The authors arrive at ways to efficiently skip over some strings thereby improving the

performance but once again they fail to address the problem of complex signature matches as

mentioned in [27]. [16] also deals with improving the efficiency of string-matching in packets for

intrusion detection but does not deal with encrypted mal-ware specifically.lets take a detailed

and more closer look at Bloom-Filters.

3.5 System Architecture and Mechanism

Now lets take a detailed look at each of the components mentioned in our solution and

explain where and how exactly Bloom-Filters are used in our system. The primary merit of

the scheme we are proposing is, as mentioned earlier, the ability to use the existing IP packet on

an as-is basis without any modification or special needs to help detect encrypted mal-ware.Its

options fields are filled with the sender’s bloom-filter that helps us detect mal-ware.This is

explained in detail in the following sections. A typical IP packet in our scheme is illustrated

in the figure below.
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Figure 3.2 A typical IP packet as used in our detection mechanism

Figure 3.3 Layer of operation for our detection mechanism

3.5.1 Sender Side

The sender as shown in the figure does the following functions:

• Sender Receives a Bloom-Filter of all the signature keyword hashes from Monitor

• Whenever it has a packet to be encrypted and sent, it quickly uses the Bloom filter it

received in step 1 and checks if and how many keywords are present in its payload that

match the worm-signature

• All the matching keywords are then hashed into a new bloom-filter that the sender

generates on a per-packet basis.
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• Also parallel to this operation, it stores all bytes or byte-sequences that match an entry

in the Monitor’s bloom filter into an array and their position in the packet in another

array.

• when the entire packet has been parsed this way,it sorts the keyword array in ascending

order, by the natural value of the byte and orders the position array’s values to correspond

with the sorted array of keywords matched.

• This position array is what will be sent along with the packet and the array storing the

keywords matched is discarded and no longer used after the sort is done.Lets call this

list Lpos.

• The Sender that actually builds its encrypted packet and then attaches this bloom-filter

in plain-text to the encrypted packet, to the options field of an IP packet. Reasons for

choosing this and other alternatives are discussed in a later section.

• Once this is done, after the 32 bits parsed in the options field, whatever the size of Lpos

is, those many bits from the remaining of the options field are used and the list inserted

after the bloom-filter. We are hoping that the size of Lpos is never greater than 272 bits

which is 304-32 bits. Even assuming that each number is represented as a 8 bit char, we

can have a maximum of 34 keywords indexed this way. Now the task of sender is done.

• The sender needs to ensure that the indexing should be done before the encryption

actually happens, no matter in which or how many layers and attached in its plain-text

form to the outgoing encrypted packet without which the monitor will not achieve its

purpose and the index of an encrypted packet will not provide any meaningful security

of the system.

3.5.2 Monitor Side

The Monitor’s functionality as shown in the figure below is as follows:
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Figure 3.4 A detailed diagram of the Sender-side functionality.

• The Monitor receives the encrypted packet and from it extracts the sender’s bloom filter

alone.

• Once this is done, the monitor then queries the received Bloom-Filter for every worm-

keyword in its database.

• It then populates an array that is filled with all the keywords that the monitor believes are

present in the sender’s bloom-filter. We should note that there is a risk of false-positives

because of the basic nature of the bloom-filter and a small probability for false-negatives

for which we will describe later on how we intend to tackle it.

• For every keyword found, the monitor queries its database to see if the keyword occurs

as a single, static keyword signature for a worm. If this is true, the packet is immediately

marked infected and dropped.

• If instead the keyword happens to be a part of a polymorphic token, we identify in which

type of signature, this keyword is found and see if the position array has it, if not we

quickly abandon this and move on to the next keyword.

• Whenever there is a need to detect an ordered or token-subsequence worm, that is the

case when Lpos will be used. Since BF2 is always 32 bits, the monitor is aware that 32

bits of the start of payload, the position list starts. All the keywords found in Monitor

are sorted by their natural ordering in the same array. For now with some naivety we
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assume that the position values stored in Lpos directly correspond to the ordered keyword

found array formed at the monitor.

• Of-course this is based on the assumption that there are no false-positives at the Monitor’s

side. This matching one-to-one position information, along with the list of keywords

found is then used to detect the presence of ordered mal-ware signatures.In the section

below we describe how to deal with false-positives and a possibility for false-negatives

arising out of this detection.

Figure 3.5 A detailed Flow-chart of Monitor-side functionality.

3.5.3 Sender’s Bloom Filter: Some design choices and decision

So essentially the detection happens in two phases: the bloom-filter phase and the database-

detection phase. In the first phase, Monitor (M) send its keyword database Bloom-filter (BF1)

to sender on an ”on-updated” basis. Whenever the Sender (S) intends to send data to another

message, it first looks at its payload part.It takes every byte of its payload, hashes it and

verifies if there is a match found in the Monitor’s database and if so, it constructs a Bloom-

Filter (BF2) of its own on a per-packet basis, hashes that particular keyword and all other

keywords that match an entry in BF1 into BF2. Here, we assume that the both S and M know

each other’s index hashing technique since they mutually query each other’s Bloom Filter at

different stages. Now the question is how to communicate this BF2 to M. We considered several

design choices, if we were to send BF2 separately as a correlated Bloom Filter for a certain



www.manaraa.com

23

packet, we would be unnecessarily increasing the traffic on the network and besides M would

have the additional task of correlating each packet with its corresponding BF2. So the best

choice would be to send this along with the packet itself. But S usually encrypts its packets

but BF2 should not be encrypted or it will not be read and parsed by M without breaking the

encryption of S which is not allowed in this case. We can probably add an un-encrypted BF2 to

the encrypted packet but that would only increase the packet size and we need to also change

the payload length and if adding BF2 meant that data in the packet would exceed the IP

packet size, then we had to handle those issues also. Hence we had to insert BF2 in the packet

in the IP packet but not in the payload.So we decided to use the options field in IP packet.

The IP option data field consists of 9 and a half words, where each word is 32 bits and is a total

of 304 bits excluding the option header. It may or may not be transmitted with every packet,

though it should be implemented by every supporting system. Since we are implementing

this scheme in a specific LAN or corporate environment we can enforce a simple constraint

that all systems use the optional field mandatorily to index a packet. Most mal-ware have

a signature not exceeding 100 bytes apart from the payload. In fact our signature database

implementation also has an average keyword length and from our experimental results also

we have proved that taking the options field to insert BF2 is indeed a good choice since for

most normal cases we arrive at acceptable false positive rates from the conclusions we draw

from the experiments. Even considering that we have an unusually high number of matching

strings in which the BF2 might fail with an unacceptable false-positive rate, we have also tested

an implementation which has 64 bits length for BF2, using 64 bits of the options field data

payload part leaving the optional fields to be set as the need may be. Of-course we see from

experimental statistics that this does not create any huge difference in our detection scheme

results for any normal IP packet carrying network such as ours. The payload is then inserted

into the IP packet and sent through IPSec which generates an encrypted IP packet either in

transport mode or tunnel mode, in both of which the IP header options field can still be used.

BF2 is inserted as 32 bits of options field in this encrypted packet and sent by S. Once at the

monitor,the database detection phase begins and the first phase is assumed to be over.
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3.5.4 Worm-detection at the Monitor: A detailed look at signature-detection

A packet is received at the Monitor, its options field are taken, and queried for every

matching keyword in the database. For every matching keyword, all mal-ware signatures that

contain this token are considered and BF2 is again searched to see if the other tokens matching

this mal-ware are present. If the mal-ware being considered has a symbol ”O” on its signature

type, then we just look for a plain presence of all tokens and if present the packet is reported

as malicious and dropped here. If the symbol says ”R” , then its matching keywords till their

values meet the threshold are alone searched. Once the threshold has been reached, other

keywords are not searched for and the packet directly dropped. But if the threshold has not

been reached even after querying all the keywords of the worm, then that mal-ware is assumed

to be absent and the bloom-filter is searched for other keywords and other matching mal-ware.

The first phase is a probabilistic phase since there is a possibility of False-positives. But

the second phase is a deterministic phase, for all the keywords assumed to be present in the

sender’s packet, a worm-signature query is initiated to the database and any matching result

is reported for appropriate action directly without any mismatch or errors.

3.5.5 Dealing with False-negatives and False-positives

We know that the bloom-filters both at the sender side and the Monitor side do not produce

any false-negatives at all, but there is a non-zero possibility that false-negatives are produced

in our scheme itself. This is the case when a worm that is present in the packet is detected

as not being present and the packet getting tagged as non-malicious and sent to the receiver.

Lets now look at how this happens.

3.5.6 A possible scenario for false-negatives occurrence

Lets say a Worm Wi has in its ordered signature tokens t1,t2 and tm where m is greater

than 1 and 2 but less than or equal to n, the total number of keywords in the database. In

short if Wi were to be present in the sender’s packet,all the above mentioned keyword tokens

would be detected at Sender along with some more additional ones due to false positives. All
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of their positions are marked in Lpos.

Now at the monitor, if we have a 3 element array and I query and detect t1,t2 and some

tr where r¡m. In this case, the third keyword sent by sender is m whereas we have detected

m earlier than that. Since the position sent by sender is m and what we detect is r, both

of them are three in number, matching the list sent by sender with Lpos. So in the position

where monitor needs to see m it sees r and falsely concludes that there is no mal-ware when

the packet is actually infected. This is the case where a false-negative might occur.

3.5.7 Absence of false negatives in our model

According to the above model, false negatives is a possibility as per our description of the

working mechanism. But in truth there are no false-negatives in our model. This is because,

for every Bloom-filter we receive, we query it for all possible keywords stored in the database

and do not stop at a point when a worm is detected. Hence even if according to our scenario

description tr was detected as a false-positive, tm would also definitely get detected since the

bloom-filter itself has no false-negatives and it is the way we design our scheme that may or

may not lead to one.

3.5.8 Converting a possible false-negative case into a definite false-positive case

Based on the scenario given above, we infer that at the monitor what we might get is 4

keywords and 3 positions in the Lpos array sent by sender. At this stage, the monitor’s sorted

keyword array will r followed by m. When such a situation occurs, monitor’s keyword-found

array will have r followed by m but only 1 position to match it with in the Lpos. At this

stage, the monitor knows for a fact that it definitely has a false-positive since both r and m

are present in its array competing for one position value. Now it can take any action that is

deemed appropriate. It can see that with m, the packet becomes a worm and with r it does

not. We err on the safe side and declare that the packet is malicious. But the knowledge about

false-positives should not be ignored and hence might be broadcast to the sender or just stored

and logged for statistical purposes.
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3.5.9 A false-positive aware model : Erring on the safe side

In any case where a false-positive occurrence is detected and the inclusion of the false-

positive case might affect our decision of whether the packet is malicious or not, we always

detect it as a malicious packet being present. This might happen even in the reverse case where

only r is actually present in the packet and m is detected as a false-positive. Even here, the

packet is detected as malicious and this anyway adds to the existing false-positive rate inherent

to the bloom-filter. This model follows the principle of erring on the safe side. Only instead

of the general case, where a keyword might be detected as true or false positive without the

user being aware, in this model we always know when a false positive has occurred because

of Lpos though we might not know what the exact false-positive case at the monitor might

be.The actual false-positively occurring keyword might be any value from t1 to tm in an m

array keyword found index at the monitor. Hence all combinations of the set of keywords are

found and checked if any of them lead to a worm being present. Though this might be trivial

with the Lpos list already prepared and sent by the sender, this is a case where with a small

deliberation in the monitor design, we overcome the possibility of false-negatives and instead

make it into a false-positive aware mechanism. Besides this is an efficient trade-off between

the sender sending all keywords with their indices and the sender just sending the bloom-filter

alone to answer yes or no for the keywords.
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CHAPTER 4. Optimization

4.1 Bloom Filter Optimization

There are several techniques to optimize the design of the bloom filters for efficient per-

formance. In this section we discuss several of them. In most cases, a Bloom filter resides

in the main memory to provide fast response to the query. Each membership query repeats

the following procedure with a certain number of hash functions: hashing the query value for

a memory address and one bit access. It is possible to speed up the membership query by

reducing the number of hash functions. However, the false positive rate increases unless the

space-efficiency is sacrificed as a tradeoff [25].

4.1.1 Parallel Bloom Filters

A parallel design for bloom filters has been introduced in [15].This system relies on a pre-

defined set of signatures grouped by length and stored in a set of parallel Bloom filters in

hardware. Each Bloom filter contains signatures of a particular length. At the time of mem-

bership query, a window whose length is equal to the maximum length of the data-members,

is considered and bytes are filled into this. All the max length substrings starting from 1 are

searched simultaneously in their respective length bloom filters in a single cycle and the entire

network byte stream advanced by one byte in the window this way. The I/O and processing

design is very specific and expensive to implement in a scalable way.

As mentioned in chapter 3, one of the chief drawbacks of this technique is the potential

need for a hardware implementation to achieve the same kind of results as the authors. Such

a designs restricts flexibility and dynamism in design.

[8] proposes a scheme where instead of hashing using an m bits array for all the k hash
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functions, each hashing function has an output ranging of m/k consecutive bits and disjoint

with the outputs of the others. Therefore, the k times one bit memory I/O can be done in

parallel within one time memory I/O cycle. The chief disadvantage with this scheme is that

the range of randomness is not sufficiently large. In short by limiting the range of each hash

function to one of the m/k bits within the m array bits, the false positive rate increases in this

scheme.

4.1.2 Hashing Algorithm design

[38] propose a new bloom filter design with pair-wise correlation among the hashed memory

addresses by squeezing every two addresses into one memory I/O block. To be specific, once

an address is computed, the next address computed must be within a certain offset away from

the previous one. This is based on the premise that reducing the memory I/O latency is the

chief way to reduce the delay created in bloom filter implementations. Therefore, each pair of

hashed bits are accessed in one memory I/O cycle with the burst-type I/O mechanism provided

in some contemporary memory designs such as Synchronous DRAM (SDRAM). The authors

introduce two sets of hash functions, primary and secondary. For every primary hash function

that is computed for a data member, the primary hash function indexes to any random address.

For each primary hash function, there is a corresponding secondary hash function that hashes

to a location within the set of memory bits or word accessed in the first iteration. Even

though the secondary hash function’s localized range seems to reduces the randomness and

hence increase the false positive rate, the primary hash is completely random. So this scheme is

a like a trade-off between a parallel bloom filter and the associated increased memory overhead

associated with it. Compared with one completely random memory access for each hash result

in the standard design of conventional bloom filters, the component of average membership

query delay due to memory I/O latency is reduced by up to 50 percent in this new design.
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4.2 Query Optimization

In this section, we deal with optimizing the actual implementation details at the Monitor

Side corresponding to the signature database we have. The following sub-sections deal with

how the querying process in Monitor can be optimized for efficient and fast look-ups.

4.2.1 A Matrix representation

We mentioned that we have a keyword database with matching keywords for each of mal-

ware entities worms. Considering the fact that each mal-ware, say a worm, could have any

number of keywords that form a part of its signature and any number of these keywords can be

common to several worms, the best structure to represent such a complex inter-leaved structure

is a mal-ware keyword matrix. This follows from a straight-forward assumption that several of

the keywords occurring in a signature are commonly used keywords that can be present in any

packet. Even the Apache-knacker worm that we illustrated in the previous section had words

like GET and HTTP as a part of its signature which can routinely occur in any packet and

stream. This is one of the common masquerading techniques used by worm-authors to prevent

detection. Apart from this fact, a matrix structure saves us considerable amount of time with

a O(1) look-up and is much more efficient than a standard tuple-populated database. A typical

keyword matrix structure is shown below.

Figure 4.1 A Model of our keyword-matrix.
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4.2.2 A Survey of Sparse-Matrix Optimization Techniques

When storing and manipulating sparse matrices on a computer, it is beneficial and often

necessary to use specialized algorithms and data structures that take advantage of the sparse

structure of the matrix. Operations using standard matrix structures and algorithms are slow

and consume large amounts of memory when applied to large sparse matrices. Sparse data is

by nature easily compressed, and this compression almost always results in significantly less

memory usage. Indeed, some very large sparse matrices are impossible to manipulate with

the standard algorithms.Further more depending on the nature of the matrix itself, there are

different types of sparse matrix optimization techniques, for symmetric, square and asymmetric

matrix structure.

4.2.2.1 Sparse Matrix and Diagonal Matrix

The naive data structure for a matrix is a two-dimensional array. Each entry in the array

represents an element say a(i, j) of the matrix and can be accessed by the two indices the

key-id and the worm-id. For a m*n matrix we need at least enough memory to store m ∗ n

entries to represent the matrix.

From observation we see that though its a n ∗m matrix, its a matrix pre-dominantly with

zeros, or in short its a sparse matrix. Sparse-matrices are a well studied phenomenon and

occurs quite often in the several fields in real-time.

Many if not most entries of a sparse matrix are zeros. The basic idea when storing sparse

matrices is to only store the non-zero entries as opposed to storing all entries. Depending on

the number and distribution of the non-zero entries, different data structures can be used and

yield huge savings in memory when compared to a naive matrix approach.

4.2.2.2 Direct Sparse Solvers

As discussed above, it is more efficient to store only the non-zero elements of a sparse

matrix. There are a number of common storage formats used for sparse matrices, but most of

them employ the same basic technique. That is, store all non-zero elements of the matrix into
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a linear array and provide auxiliary arrays to describe the locations of the non-zero elements

in the original matrix.

The storing of non-zero elements of a sparse matrix into a linear array is done by walking

down each column (column-major format) or across each row (row-major format) in order, and

writing the non-zero elements to a linear array in the order they appear in the walk. The Intel

MKL sparse matrix storage format for direct sparse solvers is specified by three arrays: values,

columns, and row index. The following table describes the arrays in terms of the values, row,

and column positions of the non-zero elements in a sparse matrix.

• Value:A real or complex array that contains the non-zero elements of a sparse matrix.

The non-zero elements are mapped into the values array using the row-major upper

triangular storage mapping described above. columns

• Column: Element I of the integer array columns is the number of the column that contains

the I-th element in the values array.

• Row-index: Element j of the integer array row-index gives the index of the element in

the values array that is first non-zero element in a row j.

The length of the values and columns arrays is equal to the number of non-zero elements

in the matrix.

4.2.3 Algorithms to optimize a square sparse matrix

4.2.3.1 Marriage problem and Latin Squares method

In mathematics, the stable marriage problem (SMP) is the problem of finding a stable

matching a matching in which no element of the first matched set prefers an element of the

second matched set that also prefers the first element. In short, given a square sparse matrix,

this is the problem with which each row is assigned one unique column index which is 1 and

vice-versa, ensuring a strict one-on-one match. Once such a match is obtained, we can easily

have those index values as a diagonal matrix in which only the diagonals are non-zero and
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thus store n elements from a n ∗ n matrix. This problem has been a very ancient one and is

generally considered as the means by which efficient and unique one to one matches are made

out of subsets of over-lapping matches.This is extensively discussed in [23].

This problem relates to our need to linearize our sparse-matrix , except that in this case,

the sparse matrix is a square one and in our case, the matrix is not a square one. This square

matching problem has also been called as the Latin Squares method. In the next section, we’ll

discuss in detail, an algorithm that solves this problem of creating a diagonal matrix.

Let A1, ..., An be subsets of an n-set M. The family of sets A1, ..., An has a system of

distinct representatives (SDR) if and only if there exist distinct elements x1, ..., xn, such that

xi is in Ai, for each i = 1, ..., n.

Let A1, ..., An be subsets of an n-set M. The family of sets A1, ..., An satisfies the marriage

condition if and only if the union of any k of the sets contains at least k elements, for all k =

1, ..., n.

MARRIAGE THEOREM

A family A1, ..., An of sets has a system of distinct representatives if and only if the family

satisfies the marriage condition.

Remark Strictly speaking, the proof below does not require the sets of boys and girls to

be equipotent. However, this is a sensible assumption. For, if n less than M, the marriage

condition fails. On the other hand, if n greater than M, then n minus M desperate girls willing

to marry any boy can be added to the set without disturbing the truth or falsity of the marriage

condition.

Proof

We can prove this theorem by describing a procedure for constructing a system of distinct

representatives which succeeds if and only if the marriage condition is satisfied. Another ele-

gant, though less procedural, proof illuminates various phases of the algorithm. It is convenient

to describe everything in terms of zero-one matrices. Let A = (aij) be an n by n matrix whose

columns are labeled by the sets A1, ..., An and whose rows are labeled by the elements of M (

= union of the Ai). For each i, j = 1,...,n, set aij = 1 if the i-th element of M is in Aj and set
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aij = 0 otherwise.

Then the family has a SDR if and only if the matrix A has a transversal of 1’s. Here is the

procedure together with a proof that it constructs a transversal of 1’s if and only if the family

satisfies the marriage condition. Let us for instance consider that in the square sparse matrix

, we have an upper triangle block A with a transversal of 1’s and the lower triangle called as

Block B.

GREEDY PHASE

If block B is empty (0 by 0), then we are done, the family has a SDR. If B contains a 1,

interchange rows and columns (without disturbing the diagonal of ones in the upper left corner

block) to put a 1 in the upper left corner of B, replace B with that obtained by using all but

the first row and first column of B, and resume the greedy phase. Otherwise, we proceed to

the LABEL PHASE

Figure 4.2 A Step-by-Step Illustration of Sparse Matrix optimization.

LABEL PHASE

Consider that the square matrix can be divided into multiple squares labeled from A to

G. Having reached here, for every 1 in C there are only zeros in the corresponding row of D.

Hence, after row and column interchanges, we have the picture above, with E all those columns

of C which contain a 1.

If the block F contains only zeros, then we are done; the family has no SDR because the

sets corresponding to the columns of F and one set corresponding to a column of G violates

the marriage condition.
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If aij = 1 in F and ajk = 1 in G, for some k, then swap columns j and k of A. This puts a

1 in the zero block just below G. Now we can swap the k-th and i-th columns of A, putting a

1 in the lower right corner zero block. Resume the greedy phase.

If F has only zeros, then the sub-matrix of A consisting of the rows and columns of A other

than the rows and columns of E violate the marriage condition. If for every nonzero column

of F, the corresponding row of G has only zeros, then let E1 be the nonzero columns of F

and let G1 be the rows of G corresponding to the columns of E1. If G1 has a 1, then we can

interchange a column of G1 with a column of E1 to put a 1 in a row that corresponds to a

column of E; whence we can do another interchange to put a 1 into the lower right block of A

and resume the GREEDY PHASE. Otherwise, let F1 be the sub-matrix of A consisting of the

columns left of E1 and whose rows are the rows of G1. If F1 has only zeros, then, as with F,

the marriage condition is violated. Otherwise, let E2 be the nonzero columns of F1 and let G2

be the rows of G corresponding to the columns of F2. If G2 contains a 1, we can do a series

of column swaps to put a 1 to the right of E and resume the GREEDY PHASE. Otherwise,

we continue the construction of Fi’s and Gi’s until some Gi has a nonzero entry unless G has

all entries zero, a violation of the marriage condition (if a column of G is zero, then the union

of one set has no elements, a violation of the marriage condition). Thus, either the marriage

condition is violated or we can do a series of swaps that puts a 1 to the right of E so we can

resume the GREEDY PHASE.

4.2.3.2 CuthillMcKee and Reverse CuthillMcKee Algorithm

In the mathematical subfield of matrix theory the CuthillMcKee algorithm is an algorithm

to reduce the bandwidth of sparse symmetric matrices.

Algorithm

Given a symmetric n∗n matrix we visualize the matrix as the adjacency matrix of a graph.

The Cuthill-McKee algorithm is then a relabeling of the vertices of the graph to reduce the

bandwidth of the adjacency matrix.

The algorithm produces an ordered n-tuple R of vertices which is the new order of the
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vertices.

First we choose a peripheral vertex x and set R := (x).

Then for i=1,2,... we iterate the following steps while |R| < n

Construct the adjacency set Ai of Ri (with Ri the i-th component of R) and exclude the

vertices we already have in R

Sort Ai with ascending vertex order. Append Ai to the Result set R. In other words,

number the vertices according to a particular breadth-first traversal where neighboring vertices

are visited in order from lowest to highest vertex order.

The reverse CuthillMcKee algorithm (RCM) is the same algorithm but with the resulting

index numbers reversed. The authors have claimed that for several practical purposes, the

reverse algorithms is a better solution.

Apart from this a huge body of work has been done on sparse-matrix solvers and ways to

optimize their storage and improve efficiency. [35] is a research and development group that

works on sparse matrix algorithms and provides a list of software packages that work on the

different aspects of estimating and optimizing sparse matrices for various research application.
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CHAPTER 5. Experiments and Discussions

In order to evaluate the effectiveness of our scheme in a real-time scenario, we conducted

several experimental tests that measured the various metrics of the system.

5.0.4 Experimental Set-up

Our general system consists of the sender and the monitor working in a mutually helpful

fashion to detect encrypted mal-ware.

5.0.5 Sender Side Implementation

In our implementation of the system, the Sender (S) is a thin-client FreeBSD host and

the Monitor (M) is a powerful a Linux desktop system that sits in the same network. The

Monitor has a signature database of a modest size of about 1604 signatures. We should note

that this is an encrypted mal-ware signature database that matches an entity to its fixed or

multiple string signature. Hence building such a database is different from directly taking

the database of signatures from Snort or Bro which consist of rules that characterize different

intrusions or anomalous behavior. Indeed a very small set of signatures in Snort alone exactly

match our requirements for a mal-ware signatures, signatures that exhibit themselves in the

payload of an entity, as opposed to specific values for the various protocol-header fields or

packet metrics as they are in Snort. Snort has explicitly stated that it removed all virus-rules

except some very few and so its entirely built on traffic flows in the network. Our database has

been built in MySQL and consists of a tables of size not exceeding 200 Kilobytes.The average

length of a mal-ware signature stored in our database is 107 bytes. Most of the signatures

we obtained for our database are single-keyword static signatures and the only samples of
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polymorphic signature useful for us would be those for which all the 3 classes of ordered,

unordered and ranked signatures would have been proved. Hence we directly took from [27]

the two polymorphic worm signatures that they generated with all 3 classes of detection. S is

a Libnet application that builds an IP packet from scratch, hence we are able to specify the

exact payload we want, including the number of keywords or tokens we want to be a part of

the packet.

5.0.6 Monitor Side Implementation

Monitor (M) is a powerful a Linux desktop system that sits in the same network as the other

hosts that it is trying to help. M has a Pcap application and a C program that runs on the

Linux PC. The Pcap application essentially acts as a listener and a packet-filter, capturing all

packets that come from nodes within the network. In our case though, it continuously listens

for any packet that might come from the S. This can be implemented with a tcpdump filter

which captures packets matching a certain expression, followed by a byte-parser that extracts

for us the optional bytes of up-to 9 half-words.The header length of a packet can be used to

determine how many bytes of the optional field have been used for the keyword position list

by the sender.

5.0.7 The working of our scheme with details

S receives BF1 from M. Along with it, it also receives an array of all possible lengths of

its individual keywords. Both of these which can be defined as off-line setup information and

configuration exchanges. For each packet that S generates, it then parses its bytes at lengths

ranged by the length values given by monitor. S then checks with BF1 for a matching entry

and depending on the result of the string match, hashes the word into BF2. Also in a parallel

way, in 2 arrays it stores the keyword’s natural value of the byte sequence and at the same

index in the second array, its position in the packet. This procedure is repeated for the entire

packet till the last set of bytes are analyzed for the highest keyword length as mentioned by

the initialization data.
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Table 5.1 Effect of changing sender’s Bloom-filter size on the false positive
rate of our model

BF2 FalsePositiveRate
Size in Bits

200 1.00

300 0.80

400 0.20

500 0.0001

Once the packet is completely parsed, it then sorts both the arrays correspondingly based

on the increasing order of the byte value found in the packet. The keyword position array is

now inserted as mentioned before. It then generates the IP packet, creates a IPSec packet out

of this IP packet, and then finally inserts BF2 and Lpos along with the packet and transmits

it forward. It should be noted here that whenever a signature database update happens at M

and it generates a new BF1, it is immediately sent to the sender. Before hashing any payload

S verifies to see if it is the latest BF1 and the length vector are the same or if there are any

other recent updates it needs to consider. This has been implemented by the use of version

number for the different BF1’s generated.

False Positives

A broad definition of false positives is the error of rejecting a null hypothesis when it is

actually true. Plainly speaking, it occurs when we are observing a difference when in truth

there is none. A false positive normally means that a test claims something to be positive,

when that is not the case.

In our experimental system, a false positive is said to occur whenever a mal-ware gets

reported as being present when it is actually a good instance or non-malicious packet. More

formally, we define the false positive rate as the percentage of packets identified as containing

mal-ware (incorrectly) over the total number of non-malicious packets sent by the sender.

The following are our experiments and their corresponding results:

5.0.8 Experiment 1

Impact of changing the size of Sender’s Bloom filter on the overall False positive

rate of our scheme



www.manaraa.com

39

Goal

Our first set of experiments were motivated towards evaluating the effect of the size of the

sender’s bloom filter on the efficiency of the overall scheme. We evaluated the effect of this by

keeping BF1 constant and then varying the number of worms sent in both cases uniformly .

Figure 5.1 Simulation results of Table 1 experimental data: Effect of
changing Sender’s Bloom filter Size on False Positive Rate of
our scheme

Inference

As it can be observed from the table 5.1 and the corresponding figure, we see that the

Number of false positives detected for the same number of packets when BF2 is varied from

200 bits to 1000 bits the false positives drop rapidly as BF2 size is increased. Here we kept

BF1 size as a constant 20000 bits, since the monitor has no memory constraints about its size

of the bloom filter. The number of packets is kept at 1000. For a size as low as 500, the false

positive rate drops to 0.0001 percent and remains negligible for higher sizes.

5.0.9 Experiment 2

Impact of changing the size of Monitor’s Bloom filter on the overall False positive

rate of our scheme

Goal Our second set of experiments were motivated towards evaluating the effect of changing

the Monitor’s bloom filter on the efficiency of the overall scheme. We varied BF1’s size from
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Table 5.2 Effect of changing Monitor’s Bloom filter Size on the false posi-
tive rate of our model

BF1 FalsePositiveRate
Size in Bits

15000 0.86

16000 0.71

17000 0.68

18000 0.16

19000 0.03

20000 0.01

21000 0.0001

15000 to 21000. The number of worms sent is always kept a constant at 1000 and the sender

bloom filter size id the minimal value of 200 which can be easily fit into a IP packet.

Figure 5.2 Simulation results of Table 2 experimental data: Effect of
changing Monitor’s Bloom filter Size on False Positive Rate of
our scheme

Inference

From the table and graph in 5.2 we observe how as BF1 improves,our false positive rate

also improves in a significant way. For acceptable sizes of the bloom filter size of Monitor, say

20000 and that of sender at 200 bits, we get a false positive rate as low as 1 percent.So from

this experiment we conclude that for our nature of experimental setup with a monitor and a

sender, our scheme has been implemented successfully and tested to show that we can with

a careful set-up and tolerable values of memory requirements, our false positive rate can be

easily reigned in to provide for an effective detection mechanism for encrypted mal-ware.
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Table 5.3 Results of first set of detection experiments for different number
of worms sent

BF2 Number of worms Number of worms
Size in Bits sent at S per 1000 packets detected at M per 1000 packets

32 1000 1000

32 2000 2000

32 3000 3000

32 4000 6000

32 5000 9000

5.0.10 Experiment 3

Experiments on detection rate

Goal Our third set of experiments were motivated towards evaluating the effect of changing

the Sender’s Bloom filter size on the detection rate of our scheme or indirectly on the efficiency

of our scheme. We kept BF1’s size a constant at 800 bits, had a scaled-down version of our

signature database and changed the BF2 size from 32 bits to 64 bits. The number of worms

sent per packet was varied from 1 to 10 per packet and the detection rate calculated with it.

So at each instance we sent 1000 packets with a variable number of worms in each one from 1

to 10. These results can be verified from Table 5.3 and its corresponding figure.

Figure 5.3 Simulation results of Table 3 experimental data: Results of de-
tection experiments for different number of worms sent at a
specific sender (S)’s bloom filter BF2 size=32 bits

Inference

The detection rate of our scheme is always greater than or equal to 100 percent. We can
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Figure 5.4 Simulation results of Table 3 experimental data: Results of de-
tection experiments for different number of worms sent at a
specific sender (S)’s bloom filter BF2 size=64 bits.

confidently state this based on the design of our scheme. This is because, the Bloom-filters we

use at both the sender and the monitor’s end always have false-positives but will never have a

false-negative. In short, whenever a keyword-token is sent, it will never escape detection at the

Bloom-filter( absence of false negatives ), but there are times when a worm is not present, but it

would still get detected as a malicious-packet( presence of false-positives ). From the tables 5.3,

5.4 given and their corresponding graphs we observe that when the Sender’s bloom-filter size

is 32 bits taken from the optional field, then the number of false positives we generate is within

a controllable value till the rate of infection is 4 worms per packet. But the more interesting

observation is for the 64 bit case, we see how the number of false positives is dramatically

reduced by half for a small addition of 32 bits to the optional field. Even at the rate of 10

worms per packet, which is quite high considering conventional packets, we get a negligible 99

false positive reports which is still a controllable value.

5.0.11 Experiment 4

Keyword matrix optimization results

In the above sections we have studied a representation for the mal-ware signature database,

considering that each mal-ware entity’s signature is some kind of an rule-based computation

over a set of keywords. This can be represented as a matrix mapping multiple keywords to many
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Table 5.4 Results of second set of detection experiments for different num-
ber of worms sent

BF2 Number of worms Number of worms
Size in Bits sent at S per 1000 packets detected at M per 1000 packets

64 2000 2000

64 4000 4000

64 6000 6000

64 8000 8000

64 10000 10099

mal-ware entities, otherwise a keyword-matrix representation. Several mal-ware entities share

keywords and sometimes the different mal-ware names are just variants of the same exploit

or have common features. In this case, it is inefficient to represent each entity separately.

This can be efficiently achieved by a matrix representation with say the mal-ware entities as

the rows and the set of all possible keywords as the columns of the matrix. If instead of the

keywords themselves, if we use a bit-map matrix and indicate the presence or absence of a

keyword for a certain mal-ware by setting or resetting the corresponding row-column bit in the

matrix, we might achieve huge savings in terms of the memory used, especially in cases where

the mal-ware signature database can run up to millions of entries and keywords. Furthermore,

even of if this keyword matrix happens to be extremely sparse, several algorithms exist that

convert a sparse-matrix structure into a much more efficient one in its representation. A good

survey of some of the sparse matrix re-ordering and optimization techniques is present in [26].

As a proof of concept, we tested an implementation of the same signature database repre-

sented as a keyword matrix. We had the same set-up for the system as mentioned earlier in

this section except that at the Monitor side, instead of a SQL signature database, we had a

bit-map matrix representation of the database. In the first instance of our experiment, we just

allowed monitor to query the sparse matrix on an as-is basis and evaluated the overhead. In

the second instance we tried an optimized representation of the keyword-matrix, choosing to

store only the non-zero values in the keyword matrix as a table. We see from Table-5.4 that

querying this optimized table has a much lesser overhead when compared with querying the

entire sparse matrix. This experiment could be a good starting point for further optimizing

the results of our design.
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Table 5.5 Comparison of system overhead in querying sparse matrix and
its optimized representation

Representation Type Processing overhead per packet
time (ms)

Sparse Matrix 0.1

Optimized Sparse Matrix 0.001

As a further improvement, we can use any of the algorithms mentioned in [26] and apply

say, Cuthill-Mckee or Reverse Cuthill-Mckee algorithm to reduce our processing overhead by

minimizing the querying delays.
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CHAPTER 6. DISCUSSION AND CONCLUSION

6.1 A Discussion on Alternative design choices and considerations

This section contains ideas that were initially thought of as alternatives but due to lack of

time, remain at the proposal stage itself, in-short they are the possible alternative strategies

that we could come up for our present scheme.

6.1.1 Index propagation Model

The most important and limiting assumption we have made in our model is that encryption

does not happen anywhere before or after the indexing layer. This assumption can also be

overcome if we just ensure that no matter in how many layers we encrypt or as many times

as we encrypt, we just need to ensure that the indexes are generated right before the first

encryption happens and then propagated specially in an un-encrypted form and then finally

attached to the encrypted packet in the last layer, say after the IPSec of IP layer happens,

assuming that is the final level of encryption the packet goes through.

6.1.2 Exclusive Encryption Layer

Also we could add a separate thin layer called the indexing layer to the existing TCP/IP

protocol stack model and make it as the exclusive-encryption layer. This might not be immedi-

ately feasible in conventional networks , but the idea of an exclusive indexing cum encryption

layer might be welcomed in other kinds of networks like Wireless sensor networks, military com-

munication or even any other kind of simple radio-based transmission (with extensive remote

deployment and centralized control).



www.manaraa.com

46

6.1.3 Communicative Model

An alternative proposal might be a scheme that allows the layer that indexes to talk to the

final layer that provides encryption and attach the index after that is done. Say for instance,

the indices were all generated by the system at the application layer, and kept there, then the

data goes through multiple layers with or without encryption. At the last stage before the

actual transmission happens, we capture each packet, attach the Bloom-filter generated at the

application layer, directly to the IP-packet and then transmit it. This model avoids creating a

new layer but requires new functionality though.

6.2 Conclusions and Future work

While we have proposed an efficient encrypted mal-ware detection scheme, this is by no

means self-sufficient to address the different kinds of encrypted mal-ware threats that continue

to evolve everyday. For instance, a separate class of mal-ware (usually as worms and exploits)

exists in a self-encrypted form, that is, the encrypted exploit as well as the decryption routine,

and or a hidden secret key, that is used to un-lock this encryption are all part of the same file

or payload. In this case, deciding what we are going to recognize as a signature and index,

deciding whether a node receiving this perceives it as a plain-text exploit that needs to be

encrypted before transmission or not, are all some of the issues we have to resolve in the

future.

There is also one more class of worms that spread in a time-lagged manner, these are called

slow-propagating worms. So another important feature that we could like to work upon is

that we are dealing with worms on a per-packet basis, we don’t yet have a method to deal

with stream-based data transfer, and also for worms that distribute themselves across multiple

packets either in a time-lagged or memory-lagged fashion. In these cases we require some kind

of a cross-packet correlation scheme that either does a time-based buffering (say buffer an

hour’s worth of packets and detect worms in the buffer, based on the average delay estimate of

slow-propagating worms) or memory-based buffering (buffering, a certain amount of packets

before detection to assimilate all possible tokens of a signature that are spread across say 1 MB
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of buffered packets) or host-based buffering (say we buffer all packets that come from a specific

source or a specific source-destination pair or ports identified as malicious or black-listed) , if we

assume that we buffer and hold the packet at the Monitor while one of the 3 types of buffering

happens, the system should be tolerant to such a kind of delay and should not suffer critically.

We have shown experimentally that the hashing and detection itself needs negligible time, but

the buffering-time and demands might critically affect several Quality-of-Service parameters

causing undesirable network over-head and this might even lead to congestion or break-down in

a reliable protocol delivery mechanism such as TCP. Also this requires that any other kind of

attacks such as IP spoofing (for host-based buffering) or flooding (for memory-based buffering)

does not occur.

Furthermore in this model we have assumed that all the nodes themselves are non-malicious

and give accurate indexes, however the nodes can also be compromised or manipulated to give

incorrect indexes , so this method is not resistant to such attack . Also this method is more

of a attack-propagation-prevention scheme for encrypted mal-ware, so the point-of-contact

infection might not be cured. To avoid this, we can probably come up with a distributed

sender-monitor scenario that can run as a simple application in each host or better still, make

the monitor as a part of all the ingress filters or incoming gate-ways.

In almost all areas of networking, securing the message transmission and also ensuring

clean packets is not just a desirable but a critical feature. Implementing our indexing scheme

for such alternative applications and networks is one of our future projects.
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